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Introduction An asymptotic regime Examples

Compact metric graphs

A compact metric graph G = (V,E) is a connected network made up of a
finite number of finite length edges e ∈ E, glued at vertices v ∈ V,
according to the topology of a graph.

Any bounded edge e is identified with a compact interval of R;
u ∈ Lp(G) ⇐⇒ u ∈ Lp(e) for every edge e of G.
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The Sobolev space H1(G)

The Sobolev space H1(G) is defined as follows

u ∈ H1(G) ⇐⇒
{

u ∈ H1(e) for every edge e of G,
u : G → R is continuous on G.

Here is what a typical H1(G) function looks like:

G

u
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The differential system

Given constants p > 2 and λ > 0, we are interested in solutions u ∈ L2(G)
of the differential system



−ũ′′ + λũ = |ũ|p−2ũ on every edge of G,

ũ is continuous on G,∑
e≻v

ũ′
e(v) = 0 for every v ∈ V \ Z ,

ũ(v) = 0 for every v ∈ Z ,

Here, Z is a set of degree-one vertices where we impose the homogenous
Dirichlet boundary condition. For v ∈ V \ Z , the condition on the sum of
derivatives is called Kirchhoff’s condition.
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The nonlinear Schrödinger equation
Kirchhoff’s condition: degree-one nodes

v
∞

lim
t−−→

t>0
0

u(v + t) − u(v)
t = 0
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The nonlinear Schrödinger equation
Kirchhoff’s condition in general: outgoing derivatives

v
∞ ∞

∑
e≻v

du
dxe

(v) = 0
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Variational formulations

Solutions of our problem correspond to critical points of the action
functional Jλ defined by

Jλ(u) := 1
2

∫
G

|u′|2 dx + λ

2

∫
G

|u|2 dx − 1
p

∫
G

|u|p dx

on the Sobolev space

H1
Z :=

{
u : G → R

∣∣∣ u is continuous; u, u′ ∈ L2(G); ∀v ∈ Z , u(v) = 0
}
.
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Goals

We are interested in the qualitative properties of

1) solutions minimizing the action on the set of nonzero solutions →

the ground states (GS)

2) solutions minimizing the action on the set of nodal solutions →

the nodal ground states (NGS)

We know that
1) The GS is positive on G
2) The NGS has two nodal zones
How do symmetries of the graph G transfer to symmetries of the GS and
the NGS?
Where are the roots of the NGS? The maximum value? ...
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Example 1 – The segment with two points glued together

x1

DD
LL

2L2

What is the shape of the GS? The NGS?

Damien Galant Qualitative properties for NLS on compact graphs 9



Introduction An asymptotic regime Examples

The asymptotic regime p → 2

Hope: obtain more information in the regime p ≈ 2, by studying the
spectral properties of the problem.

For every positive integer k and p > 2, we want to relate the solutions of
the nonlinear problem

−ũ′′ + λũ = |ũ|p−2ũ on every edge of G,

ũ is continuous on G,∑
e≻v

ũ′
e(v) = 0 for every v ∈ V \ Z ,

ũ(v) = 0 for every v ∈ Z ,

to the eigenfunctions of the corresponding eigenvalue problem with
eigenvalue γk .
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A rescaling

In order to better understand the behaviour of the solutions as p → 2, we
consider the new variable u = γ

−1/(p−2)
k ũ. They are solutions of the

nonlinear problem

−u′′ + λu = γk |u|p−2u on every edge of G,
u is continuous on G,∑
e≻v

u′
e(v) = 0 for every v ∈ V \ Z ,

u(v) = 0 for every v ∈ Z .

(Pp,k)
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The reduced problem when p ≈ 2

Let (upn)n be a sequence of solutions to (Ppn,k), (pn)n ⊆ ]2,+∞[, pn → 2.

Assume that
upn

H1
Z−−−⇀

n→∞
u∗.

Question
What can we say about u∗?
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The reduced problem when p ≈ 2

Let φ ∈ H1
Z (G). Using φ as a test function in (Ppn,k), we get∫

G
(u′

pnφ
′ + λupnφ) dx = λk

∫
G

|upn |pn−2upnφ dx .

Taking the limit n → ∞ leads to (since pn → 2)∫
G
(u′

∗φ
′ + λu∗φ) dx = λk

∫
G

u∗φdx .

Therefore, u∗ belongs to Ek .

Question
Is that all we can say about u∗?
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The reduced problem when p ≈ 2

Let us use specifically ψ ∈ Ek as a test function in (Ppn,k). We obtain∫
G
(u′

pnψ
′ + λupnψ) dx = λk

∫
G

|upn |pn−2upnψ dx .

Using upn as a test function in the equation −ψ′′ + aψ = λkψ, we get∫
G
(u′

pnψ
′ + λupnψ) dx = λk

∫
G

upnψ dx .

Thus, ∫
G

(
|upn |pn−2 − 1

)
upnψ dx = 0.
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The reduced problem when p ≈ 2
We divide by pn − 2:∫

G

|upn |pn−2 − 1
pn − 2 upnψ dx =

∫
G

e(pn−2) ln |upn | − 1
pn − 2 upnψ dx = 0.

Taking n → ∞ leads to ∫
G

(
u∗ ln |u∗|

)
ψ dx = 0.

Definition
A function u∗ ∈ Ek is a solution of the reduced problem on Ek if and
only if ∫

G

(
u∗ ln |u∗|

)
ψ dx = 0

for all ψ ∈ Ek .
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Recap

Given a sequence (upn)n, pn → 2 converging weakly to u∗ ∈ H1
Z , we have

seen that necessarily:

u∗ belongs to Ek ;
u∗ is a solution of the reduced problem, namely be so that∫

G

(
u∗ ln |u∗|

)
ψ dx = 0

for all ψ ∈ Ek .

Question
Given a solution of the reduced problem u∗ ∈ Ek , can one find solutions of
(Pp,k) close to u∗ for p ≈ 2? Can one detect when there is only one
solution close to u∗ for a given p ≈ 2?

Damien Galant Qualitative properties for NLS on compact graphs 16
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Lyapunov-Schmidt reduction
Functional space with extra regularity:

H :=
{

u ∈ H1
Z | u is H2 in each edge, u satisfies Kirchhoff’s conditions

}
.

We fix k ≥ 1 and we define the map

F :
{

[2,+∞[ × H → L2(G),
(p, u) 7→ −u′′ + λu − λk |u|p−2u.

When p = 2,
F (2, u) = 0 ⇐⇒ u ∈ Ek

and when p > 2,

F (p, u) = 0 ⇐⇒ u solves (Pp,k).

Damien Galant Qualitative properties for NLS on compact graphs 17
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Rough idea

We want to study the dependence of roots of F in terms of p.

We would
like to use Implicit Function Theorems, but F “vanishes too much” for
p = 2 (in fact, vanishes identically on Ek !)

Lyapunov-Schmidt reduction (PEk ,PE⊥
k

: L2-orthogonal projections):

F (p, u) = 0 ⇐⇒

PE⊥
k

F (p, u) = 0,
PEk F (p, u) = 0,

we obtain good invertibility properties on E⊥
k and we are then reduced to a

finite dimensional problem on Ek .

Damien Galant Qualitative properties for NLS on compact graphs 18
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A word of caution

Be careful!
� Implicit Function Theorems require regularity! �

To perform the Lyapunov-Schmidt reduction around u∗, we will need

F :
{

[2,+∞[ × H → L2(G),
(p, u) 7→ −u′′ + λu − λk |u|p−2u.

to be C2 in u in the neighborhood of (2, u∗).

Damien Galant Qualitative properties for NLS on compact graphs 19



Introduction An asymptotic regime Examples

A word of caution

Be careful!
� Implicit Function Theorems require regularity! �

To perform the Lyapunov-Schmidt reduction around u∗, we will need

F :
{

[2,+∞[ × H → L2(G),
(p, u) 7→ −u′′ + λu − λk |u|p−2u.

to be C2 in u in the neighborhood of (2, u∗).
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An important set

Expressions such as u 7→ u ln |u| and its derivative u 7→ 1 + ln |u| appear in
the study.

Regularity issues occur when u vanishes!

Definition (An important set)

S :=
{

u ∈ H | inf
x∈G

(
|u(x)| + |u′(x)|

)
> 0

}
.

Remark: if u ∈ Ek , then(
u ∈ S

)
⇐⇒ u does not vanish identically on edge of G.

On graphs, this is not automatic: no unique continuation principle!
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Nondegenerate solutions of the reduced problem

Definition
A solution u∗ ∈ Ek ∩ S of the reduced problem on Ek is nondegenerate if
and only if the map

Ek → Ek : ψ 7→ PEk

(
(1 + ln |u∗|)ψ

)
is invertible.

Remark: nondegeneracy always holds if dim Ek = 1.
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Main Theorem

Theorem
Let k ≥ 1 be an integer and let u∗ ∈ Ek ∩ S.

1 non-existence: If u∗ is not a solution of the reduced problem, then
there exists a neighbourhood U of (2, u∗) in [2,+∞[ × H so that
problem (Pp,k) has no solution in U with p > 2;

2 existence, uniqueness and non-degeneracy: If u∗ is a
nondegenerate solution of the reduced problem, then there exists a
neighbourhood U of (2, u∗) in [2,+∞[ × H and a number ε > 0 so
that for all p ∈ ]2, 2 + ε], there exists a unique up ∈ H so that (p, up)
belongs to U and so that up is a solution of problem (Pp,k).
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Unidimensional eigenspaces

In case Ek = spanφ is of dimension 1, up to sign, we know exactly the
limit u∗ as we know that u∗ = aφ with a such that

0 =
∫

G
φ2 ln |aφ| dx =

∫
G
φ2(ln |a| + ln |φ|) dx .

Moreover, it is nondegenerate.
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Uniqueness of positive solutions for p ≈ 2

Theorem
If p ≈ 2 is close enough to 2, the positive solution of (Pp,1) is unique and
is a ground state of the problem.

Main ingredients of the proof.

Show that there exists C > 0 such that all positive solutions of (Pp,1)
with 2 < p ≤ 3 satisfy ∥u∥H1(G) ≤ C ;
When p → 2, sequences of positive solutions to (Pp,1) converge
weakly (up to subsequences) to the only positive eigenfunction;
Since dim E1 = 1, u∗ is nondegenerate;
The Lyapunov-Schmidt reduction proves the uniqueness result.
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Convergence of nodal ground states when p → 2

Theorem (Convergence of nodal ground states)
If (upn)n is a sequence of nodal ground states of (Pp,k) with pn → 2, then
up to a subsequence one has that

upn
H2

−−−→
n→∞

u∗,

where u∗ ∈ E2 \ {0} is a solution of the reduced problem.

Remark
If u∗ belongs to S (i.e. does not vanish on any edge) and is
nondegenerate, one may obtain uniqueness and symmetry results by the
Lyapunov-Schmidt reduction.
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Introduction An asymptotic regime Examples

The n-bridge
e1

e2

e4

n-edges e1, ... en of length 2L1, ..., 2Ln with L1 > L2 ≥ L3 ≥ ... ≥ Ln.
What can be said on the ground state and the nodal ground state for
p ≈ 2 ?

Ground state: easy ...

It is constant for p ≈ 2

.

What about the nodal
ground state?
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The n-bridge
The second eigenspace

Let us parametrize the edges on [−Li , Li ]. The solution of
−u′′ = γu on [−Li , Li ],

u is continuous on G,∑
e≻v

ũ′
e(v) = 0 for every v ∈ V

are given by ui(x) = ai cos(√γx) + bi sin(√γx) with, for all 1 ≤ i , j ≤ n,

ai cos(√γLi) = aj cos(√γLj),

bi sin(√γLi) = bj sin(√γLj),∑
ai sin(√γLi) = 0,∑
bi cos(√γLi) = 0.
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The n-bridge
The second eigenspace

We prove that the second eigenvalue is defined by

γ2 ∈
]( π

2L1

)2
, min

{( π

2L2

)2
,
( π

L1

)2}[
is the solution of

∑
tan(√γ2Li) = 0,

with eigenfunction
φ2,1(x) = a1 cos(√γ2x),

φ2,i(x) = a1
cos(√γ2L1)
cos(√γ2Li)

cos(√γ2x), for i ≥ 2
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The n-bridge
Properties of φ2

We observe that:

1 φ2,i are even on each edge;
2 one nodal domain of φ2 is included in e1;
3 φ2,i does not have a root on [−Li , Li ] for i ≥ 2

4 if Ai =
∣∣∣a1

cos(√γ2L1)
cos(√γ2Li )

∣∣∣ then A1 > A2 ≥ . . . ≥ An;

5 if Li = Lj then φ2,i(x) = φ2,j(x).
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The n-bridge
Conclusions

Ground state: It is constant for p ≈ 2.

Nodal ground state: For p ≈ 2

1 ui are even on each edge;
2 one nodal domain is strictly included in e1;
3 does not have a root on [−Li , Li ] for i ≥ 2;
4 if Ãi = maxei |ui | then Ã1 > Ãi for all i ≥ 2;
5 if Li = Lj then ui(x) = uj(x).
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The dumbbell – Conclusion

e1 length 2L1

e3 length 2L3

e2 length 2L1

Ground state: It is constant for p ≈ 2.

Nodal ground state: For p ≈ 2
1 u1, u2 are even,
2 the root of u is the middle point of e3,
3 u is odd “globally”.
4 u3 is strictly monotone.
5 the maximum of φ2 is the “extremity” of the loop.
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The tadpole – Dirichlet

e1 of length L

e2 of length 2L

D

For p ≈ 2, the positive GS is even on the loop, increasing on the segment.

For p ≈ 2, the NGS is
1 even on the loop,
2 one nodal domain is included in the loop,
3 the maximum of the amplitude is in the interior of the segment.
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The tadpole – Neumann

v e1 of length L

e2 of length 2L

N

For p ≈ 2, the GS is constant
The second eigenvalue is γ2 = ( π

2L)2 with eigenfunction

φ2,1(x) = −2a2 cos
(
π

2Lx
)
, φ2,2(x) = a2 cos

(
π

2Lx
)

1 φ2 is even on the loop,
2 the loop is one nodal domain, the segment is the second nodal

domain, the nodal set is the vertex v
3 the maximum of the amplitude is on the vertex of degree 1.

Damien Galant Qualitative properties for NLS on compact graphs 33



Introduction An asymptotic regime Examples

The tadpole – Neumann

v e1 of length L

e2 of length 2L

N

For p ≈ 2, the GS is constant
The second eigenvalue is γ2 = ( π

2L)2 with eigenfunction

φ2,1(x) = −2a2 cos
(
π

2Lx
)
, φ2,2(x) = a2 cos

(
π

2Lx
)

1 φ2 is even on the loop,
2 the loop is one nodal domain, the segment is the second nodal

domain, the nodal set is the vertex v
3 the maximum of the amplitude is on the vertex of degree 1.
Damien Galant Qualitative properties for NLS on compact graphs 33



Introduction An asymptotic regime Examples

The tadpole – Neumann

v e1 of length L

e2 of length 2L

N

What about the NGS for p ≈ 2?

Easy:
1 u is even on the loop,
2 the maximum of the amplitude is on the line.
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The tadpole - Neumann

v
e1 of length L

e2 of length 2L

N

What about the nodal domain? u(v) = 0 or not?
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The tadpole - Neumann

u cannot be equal to zero at the vertex v as otherwise u2 is a solution of
−u′′ + λu = |u|p−2u
u(−L) = u(L) = 0
u > 0 on ] − L, L[

and u1 is a solution of 
−u′′ + λu = |u|p−2u
u′(0) = u(L) = 0
u < 0 on ]0, L[

By uniqueness of the solution of these problems and as u1 = −u2|[0,L] this
is not a solution on the graph as it does not satisfy the Kirchhoff condition.
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The tadpole – Neumann

v
e1 of length L

e2 of length 2L

N

In fact u−1(0) = {x0} with x0 a point of the segment.

φ2,1(x) = −2a2 cos( π2Lx), φ2,2(x) = a2 cos( π2Lx)

hence the amplitude is larger on the segment.

The same is true for the NGS by convergence.
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The tadpole – Neumann

We know that the time needed to go from the maximum to 0 is a
decreasing function of the value of the maximum. Hence the result.

Conclusion: For p ≈ 2, the NGS satisfies :
1 u is even on the loop,
2 the maximum of the amplitude is on the line,
3 u−1(0) = {x0} with x0 a point of the segment,
4 one nodal domain is included in the segment, the other contains the

loop.
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One bubble

D N

e3 of length 2L3

e2 of length L1e1 of length L1

First eigenvalue: γ1 =
( π

2(L3 + 2L1)
)2

with the first eigenfunction even on
the loop. The GS is even on the loop.
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One bubble

Second eigenvalue:
If L3 < 4L1 then γ2 =

( 3π
2(L3 + 2L1)

)2
is simple with the second

eigenfunction even on the loop and not identically zero on an edge. In that
case, the NGS is also even on the loop.

If L3 > 4L1 then γ2 =
( π

L3

)2
is simple with the second eigenfunction odd

on the loop and identically zero on e1 and on e2. What about the NGS?
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The limit when p → 2 on the loop

0−L L
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Box when p ≈ 2 on the loop

0−L L
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Sign change on the loop

0−L L
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Problem: behaviour at the node?

0−L L
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Continuity
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Conclusion: On the loop
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One bubble – Asymmetric vertex conditions

D N

e3 of length 2L3

e2 of length L1e1 of length L1

The GS is even on the loop.

If L3 < 4L1 then the NGS is also even on the loop.

If L3 > 4L1 then the NGS is odd on the loop and identically zero on e1
and on e2.
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The symmetric stargraph – Symmetry breaking

L

D

L
D

L D

For L fixed, by uniqueness, for p ≈ 2, the GS is symmetric (i.e. its
restrictions to all edges, viewed as functions [0, L] → R, are all equal).

Instead, for any p > 2, if L is large enough then the ground state on GL is
not symmetric.

In particular, the uniqueness of the positive solution is not always valid
(not as on the interval).
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Thanks!

Thanks for your attention!
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