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Compact metric graphs

A compact metric graph G = (V,E) is a connected network made up of a

finite number of finite length edges e € E, glued at vertices v € V,
according to the topology of a graph.

A
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Compact metric graphs

A compact metric graph G = (V,E) is a connected network made up of a

finite number of finite length edges e € E, glued at vertices v € V,
according to the topology of a graph.

A

m Any bounded edge e is identified with a compact interval of R;
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Compact metric graphs

A compact metric graph G = (V,E) is a connected network made up of a

finite number of finite length edges e € E, glued at vertices v € V,
according to the topology of a graph.

m Any bounded edge e is identified with a compact interval of R;

muclP(G) < ueclP(e) foreveryedge eof G.
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The Sobolev space H(G)

The Sobolev space H'(G) is defined as follows

ue HYG) «— {u € H(e) for every edge e of G,

u:G — R iscontinuous on G.

Here is what a typical H!(G) function looks like:
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L%(G)
of the differential system
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L%(G)
of the differential system

—" + A\ = |G|P~20  on every edge of G,
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L%(G)
of the differential system

—" + A\ = |G|P~20  on every edge of G,

i1 is continuous on G,
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L%(G)
of the differential system

—@" 4+ A\ = |G|P~20  on every edge of G,
i is continuous on G,
ZE;(V):O for every ve V\ Z,
emv

u(v)=0 for every v € Z,
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L%(G)
of the differential system

—@" 4+ A\ = |G|P~20  on every edge of G,
i is continuous on G,
Zag(v):o for every ve V\ Z,
emv

u(v)=0 for every v € Z,

Here, Z is a set of degree-one vertices where we impose the homogenous
Dirichlet boundary condition. For v € V\ Z, the condition on the sum of
derivatives is called Kirchhoff's condition.
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The nonlinear Schrédinger equation
Kirchhoff's condition: degree-one nodes

i 00
im u(v+t)—u(v) _0
t——0 t
t>0
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The nonlinear Schrédinger equation
Kirchhoff's condition in general: outgoing derivatives

(0.¢]

(.¢]
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Variational formulations

Solutions of our problem correspond to critical points of the action
functional Jy defined by

1 A 1
In(v) :=i/g\u’|2dx+§/g|u|2dx—;/g|u|pdx

on the Sobolev space

H = {u :G—R ‘ u is continuous; u, v’ € L*(G); Vv € Z,u(v) = 0}.
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Goals

We are interested in the qualitative properties of

1) solutions minimizing the action on the set of nonzero solutions —
the ground states (GS)
2) solutions minimizing the action on the set of nodal solutions —

the nodal ground states (NGS)
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Goals

We are interested in the qualitative properties of
1) solutions minimizing the action on the set of nonzero solutions —
the ground states (GS)
2) solutions minimizing the action on the set of nodal solutions —
the nodal ground states (NGS)

We know that

1) The GS is positive on G
2) The NGS has two nodal zones
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Goals

We are interested in the qualitative properties of
1) solutions minimizing the action on the set of nonzero solutions —
the ground states (GS)
2) solutions minimizing the action on the set of nodal solutions —
the nodal ground states (NGS)

We know that

1) The GS is positive on G
2) The NGS has two nodal zones

How do symmetries of the graph G transfer to symmetries of the GS and
the NGS?
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Goals

We are interested in the qualitative properties of

1) solutions minimizing the action on the set of nonzero solutions —
the ground states (GS)
2) solutions minimizing the action on the set of nodal solutions —
the nodal ground states (NGS)

We know that

1) The GS is positive on G
2) The NGS has two nodal zones

How do symmetries of the graph G transfer to symmetries of the GS and
the NGS?
Where are the roots of the NGS? The maximum value? ...
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Example 1 — The segment with two points glued together

2L,

L Xl L

What is the shape of the GS? The NGS?
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The asymptotic regime p — 2

Hope: obtain more information in the regime p ~ 2, by studying the
spectral properties of the problem.

For every positive integer k and p > 2, we want to relate the solutions of
the nonlinear problem

—0" 4+ X = |i|P~20  on every edge of G,
1 is continuous on G,

Zn;(v)zo for every v e V\ Z,
eV

u(v)=0 for every v € Z,

to the eigenfunctions of the corresponding eigenvalue problem with
eigenvalue .
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A rescaling

In order to better understand the behaviour of the solutions as p — 2, we
consider the new variable u = 7;1/(’)72)1”1. They are solutions of the

nonlinear problem

—u" + Au=y|ulP~?u  on every edge of G,

u is continuous on G,

Y u(v)=0 for every v e V\ Z, (Pp,k)
e-v

u(v) =0 for every v € Z.
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The reduced problem when p ~ 2

Let (up,)n be a sequence of solutions to (Pp, «), (Pn)n C ]2, +00[, pn — 2.
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The reduced problem when p ~ 2

Let (up,)n be a sequence of solutions to (Pp, «), (Pn)n C ]2, +00[, pn — 2.

Assume that
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The reduced problem when p ~ 2

Let (up,)n be a sequence of solutions to (Pp, «), (Pn)n C ]2, +00[, pn — 2.

Assume that

What can we say about u,?
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The reduced problem when p ~ 2

Let ¢ € H3(G). Using ¢ as a test function in (P, x), we get

/g(U;)ngOl + Aupnso) dx = Ak/g |uPn|pn_2uPnS0dX‘
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The reduced problem when p ~ 2

Let ¢ € H3(G). Using ¢ as a test function in (P, x), we get

/g(U;)ngOl + Aupnso) dx = Ak/g |uPn|pn_2uPnS0dX‘

Taking the limit n — oo leads to (since p, — 2)

/(uigo/ + Aup)dx = )\k/ Uy dx.
g g
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The reduced problem when p ~ 2

Let ¢ € H3(G). Using ¢ as a test function in (P, x), we get

/g(u;,ncp/ + Aup,p)dx = Ak/g |upn|p"_2upn<p dx.

Taking the limit n — oo leads to (since p, — 2)

/(uigo/ + Aup)dx = )\k/ Uy dx.
g g

Therefore, u, belongs to Ej.
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The reduced problem when p ~ 2

Let ¢ € H3(G). Using ¢ as a test function in (P, x), we get

/g(u;,ncp' + Aup,p)dx = )\k/g |upn|p"_2upng0 dx.
Taking the limit n — oo leads to (since p, — 2)

/(u;go/ + Aup)dx = )\k/ Uy dx.
g g

Therefore, u, belongs to Ej.

Is that all we can say about u,?

Damien Galant



Introduction An asymptotic regime Examples
o [usSsEs mEsEssEssEs] O ey

The reduced problem when p ~ 2

Let us use specifically v « £, as a test function in (P,, k). We obtain

/g(u;,nl// + Aup, ) dx = )\k/g |upn\p"_2upnw dx.
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The reduced problem when p ~ 2

Let us use specifically v « £, as a test function in (P,, k). We obtain

/g(u;,nl// + Aup, ) dx = )\k/g |upn\p"_2upnw dx.

Using up, as a test function in the equation —¢/" + a1/ = A\,1), we get

/g(u;nw Ay, ) dx = Ak/g gyt dx.
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The reduced problem when p ~ 2

Let us use specifically v « £, as a test function in (P,, k). We obtain
[t 4 )t = N [ g P72
Using up, as a test function in the equation —¢/" + a1/ = A\,1), we get
[+ ) dx = A [

Thus,
/g(|upn|”"_2 —1)up,1pdx = 0.
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The reduced problem when p ~ 2

We divide by p, — 2:

pn—2 _ 1 (Pn=2)In |up,| _ 1
/g‘up",l—_z"""d’dxz/ge S tpidx =0,
n n
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The reduced problem when p ~ 2

We divide by p, — 2:

pn—2 _ 1 (Pn=2)In |up,| _ 1
/g‘u"";—_zupn@bdXZ/ge S tpidx =0,
n n

Taking n — oo leads to

e N | Uy dx =0.
/g(u n|us ) dx
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The reduced problem when p ~ 2

We divide by p, — 2:

pn—2 _ 1 (Pn=2)In |up,| _ 1
/g‘upn,l—_zupnd’dxz/ge S tpidx =0,
n n

Taking n — oo leads to

«Inju])yYdx = 0.
/g(u n|u)ydx =0

A function u, € Ei is a solution of the reduced problem on Ej if and
only if
/(u* In|us|)ypdx =0
g
for all ¥ € Ey.
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Recap

Given a sequence (Up,)n, pn — 2 converging weakly to u, € H>, we have
seen that necessarily:
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Recap
Given a sequence (Up,)n, pn — 2 converging weakly to u, € H>, we have

seen that necessarily:

m u, belongs to Eg;
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Recap

Given a sequence (Up,)n, pn — 2 converging weakly to u, € H>, we have
seen that necessarily:

m u, belongs to Eg;

® u, is a solution of the reduced problem, namely be so that

« In Uy dx =0
/g(u n|uy]) dx

for all Y € Ey.
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Recap

Given a sequence (Up,)n, pn — 2 converging weakly to u, € H>, we have
seen that necessarily:

m u, belongs to Eg;

m u, is a solution of the reduced problem, namely be so that

/(u* In|u)pdx =0
g
for all Y € Ey.

Given a solution of the reduced problem u, € Ey, can one find solutions of
(Pp,k) close to uy for p =27 Can one detect when there is only one
solution close to u, for a given p ~ 27

Damien Galant



Introduction An asymptotic regime Examples
o [ussssEEEs EssEssEs] O ey

Lyapunov-Schmidt reduction

Functional space with extra regularity:

H = {u € H3 | uis H? in each edge, u satisfies Kirchhoff's conditions}.
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Lyapunov-Schmidt reduction

Functional space with extra regularity:

H = {u € H3 | uis H? in each edge, u satisfies Kirchhoff's conditions}.
We fix k > 1 and we define the map

2+l x H = 1X(G),
(p, u) = —u" + Au— AulP2u.
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Lyapunov-Schmidt reduction

Functional space with extra regularity:

H = {u € H3 | uis H? in each edge, u satisfies Kirchhoff's conditions}.
We fix k > 1 and we define the map

2+l x H = 1X(G),
(p, u) = —u" + Au— AulP2u.

When p = 2,
F(2,u)=0 <= ue€E
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Lyapunov-Schmidt reduction

Functional space with extra regularity:

H = {u € H3 | uis H? in each edge, u satisfies Kirchhoff's conditions}.
We fix k > 1 and we define the map

2+l x H = 1X(G),
(p, u) = —u" + Au— AulP2u.

When p = 2,
F(2,u)=0 <= ue€E

and when p > 2,

F(p,u) =0 <= u solves (Ppx).

Damien Galant
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Rough idea

We want to study the dependence of roots of F in terms of p.
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Rough idea

We want to study the dependence of roots of F in terms of p. We would
like to use Implicit Function Theorems, but F “vanishes too much” for
p = 2 (in fact, vanishes identically on Ex!)
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Rough idea

We want to study the dependence of roots of F in terms of p. We would
like to use Implicit Function Theorems, but F “vanishes too much” for
p = 2 (in fact, vanishes identically on Ej!)

Lyapunov-Schmidt reduction (PE, , PEkJ_: L2-orthogonal projections):

PEkL F(p,u) =0,

F(p,u) =0 —
{PEkF(p, u) =0,
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Rough idea

We want to study the dependence of roots of F in terms of p. We would
like to use Implicit Function Theorems, but F “vanishes too much” for
p = 2 (in fact, vanishes identically on Ej!)

Lyapunov-Schmidt reduction (PE, , PEkJ_: L2-orthogonal projections):

PEkL F(p,u) =0,

F(p,u) =0 —
Pg F(p,u) =0,

we obtain good invertibility properties on EkL and we are then reduced to a
finite dimensional problem on Ej.

Damien Galant
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A word of caution

Be careful!

A Implicit Function Theorems require regularity! A
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A word of caution

Be careful!

A Implicit Function Theorems require regularity! A

To perform the Lyapunov-Schmidt reduction around u,, we will need

. [2, 400 x H — L3(G),
(p, u) = —u" 4+ Au— AJulP~2u.

to be C? in u in the neighborhood of (2, u.).
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An important set

Expressions such as u — u In|u| and its derivative u — 1+ In|u| appear in
the study.
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An important set

Expressions such as u — u In|u| and its derivative u — 1+ In|u| appear in
the study. Regularity issues occur when u vanishes!
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An important set

Expressions such as u — u In |u| and its derivative u +— 1+ In|u| appear in
the study. Regularity issues occur when u vanishes!

Definition (An important set)

Si={ucH| inf (Ju()] + 4 (x)]) > 0}.
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An important set

Expressions such as u — u In |u| and its derivative u +— 1+ In|u| appear in
the study. Regularity issues occur when u vanishes!

Definition (An important set)

Si={ucH| inf (Ju()] + 4 (x)]) > 0}.

Remark: if u € Ej, then
(u € 5) <= u does not vanish identically on edge of G.

On graphs, this is not automatic: no unique continuation principle!
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oo

Nondegenerate solutions of the reduced problem

Definition
A solution u, € Ex N S of the reduced problem on Ej is nondegenerate if
and only if the map

Ex — Ex : Y — PE, ((1 +1In |U*|)¢>

is invertible.

Damien Galant



Introduction An asymptotic regime Examples
o [usSssssssssss ssms] O ey

Nondegenerate solutions of the reduced problem

A solution u, € Ex N S of the reduced problem on Ej is nondegenerate if
and only if the map

Ex — Ex : Y — PE, ((1 +1In |U*|)¢>

is invertible.

Remark: nondegeneracy always holds if dim E;, = 1.
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Main Theorem

Let k > 1 be an integer and let u, € Ex N S.
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Main Theorem

Let k > 1 be an integer and let u, € Ex N S.

non-existence: If u, is not a solution of the reduced problem, then
there exists a neighbourhood U of (2, u.) in [2,+oco[ x H so that
problem (Pp. k) has no solution in U with p > 2;
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Main Theorem

Let k > 1 be an integer and let u, € Ex N S.

non-existence: If u, is not a solution of the reduced problem, then
there exists a neighbourhood U of (2, u.) in [2,+oco[ x H so that
problem (Pp. k) has no solution in U with p > 2;

existence, uniqueness and non-degeneracy: If u, is a
nondegenerate solution of the reduced problem, then there exists a
neighbourhood U of (2, u.) in [2,4o00[ x H and a number ¢ > 0 so
that for all p € 12,2+ ¢], there exists a unique u, € H so that (p, up)
belongs to U and so that up, is a solution of problem (Pp k).

Damien Galant
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Unidimensional eigenspaces

In case Ex = span ¢ is of dimension 1, up to sign, we know exactly the
limit u* as we know that u, = ay with a such that

o:/¢2|nya¢ydx:/¢2(|n\ay+|ny<p\)dx.
g g

Moreover, it is nondegenerate.
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Uniqueness of positive solutions for p ~ 2

If p =~ 2 is close enough to 2, the positive solution of (Pp 1) is unique and
is a ground state of the problem.
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Uniqueness of positive solutions for p ~ 2

If p =~ 2 is close enough to 2, the positive solution of (Pp 1) is unique and
is a ground state of the problem.

Main ingredients of the proof.

m Show that there exists C > 0 such that all positive solutions of (Pp.1)
with 2 < p < 3 satisfy [|u||p1(g) < C;
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Uniqueness of positive solutions for p ~ 2

If p =~ 2 is close enough to 2, the positive solution of (Pp 1) is unique and
is a ground state of the problem.

Main ingredients of the proof.

m Show that there exists C > 0 such that all positive solutions of (Pp.1)
with 2 < p < 3 satisfy [|u||p1(g) < C;

m When p — 2, sequences of positive solutions to (Pp,1) converge
weakly (up to subsequences) to the only positive eigenfunction;
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Uniqueness of positive solutions for p ~ 2

If p =~ 2 is close enough to 2, the positive solution of (Pp 1) is unique and
is a ground state of the problem.

Main ingredients of the proof.

m Show that there exists C > 0 such that all positive solutions of (Pp.1)
with 2 < p < 3 satisfy [|u||p1(g) < C;

m When p — 2, sequences of positive solutions to (Pp,1) converge
weakly (up to subsequences) to the only positive eigenfunction;

m Since dim E; = 1, u, is nondegenerate;
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Uniqueness of positive solutions for p ~ 2

If p =~ 2 is close enough to 2, the positive solution of (Pp 1) is unique and
is a ground state of the problem.

Main ingredients of the proof.

m Show that there exists C > 0 such that all positive solutions of (Pp.1)
with 2 < p < 3 satisfy [|u||p1(g) < C;

m When p — 2, sequences of positive solutions to (Pp,1) converge
weakly (up to subsequences) to the only positive eigenfunction;

m Since dim E; = 1, u, is nondegenerate;

m The Lyapunov-Schmidt reduction proves the uniqueness result. O

Damien Galant
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Convergence of nodal ground states when p — 2

Theorem (Convergence of nodal ground states)

If (up,)n is a sequence of nodal ground states of (Pp k) with p, — 2, then
up to a subsequence one has that

where u, € E; \ {0} is a solution of the reduced problem.

Damien Galant
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Convergence of nodal ground states when p — 2

Theorem (Convergence of nodal ground states)

If (up,)n is a sequence of nodal ground states of (Pp k) with p, — 2, then
up to a subsequence one has that

where u, € E; \ {0} is a solution of the reduced problem.

RENEILS

If u, belongs to S (i.e. does not vanish on any edge) and is

nondegenerate, one may obtain uniqueness and symmetry results by the
Lyapunov-Schmidt reduction.

Damien Galant



Introduction An asymptotic regime Examples

The n-bridge
el
€4

Se——

n-edges ey, ... e, of length 2Ly, ..., 2L, with Ly > Ly > L3> ... > L,,.

What can be said on the ground state and the nodal ground state for
p~27
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The n-bridge
el
€4

Se——

n-edges ey, ... e, of length 2Ly, ..., 2L, with Ly > Ly > L3> ... > L,,.

What can be said on the ground state and the nodal ground state for
p~27

Ground state: easy ... It is constant for p =~ 2.
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The n-bridge
el
€4

Se——

n-edges ey, ... e, of length 2Ly, ..., 2L, with Ly > Ly > L3> ... > L,,.
What can be said on the ground state and the nodal ground state for
p~27

Ground state: easy ... It is constant for p =~ 2. What about the nodal
ground state?

Damien Galant
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The n-bridge

The second eigenspace

Let us parametrize the edges on [—L;, L;]. The solution of
—u" =~u on [—L;, L],
u is continuous on G,

> b(v)=0  forevery vevV

e-v
are given by u;j(x) = aj cos(,/yx) + bjsin(\/yx) with, for all 1 </, < n,
aj cos(y/7L;i) = ajcos(\/7L;),
bjsin(\/7L;) = bjsin(\/7L;),
> ajsin(y/Li) =0,
> bjcos(,/7Li) = 0.
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The n-bridge

The second eigenspace

We prove that the second eigenvalue is defined by

e |(50) " min{(55)" (£} is the solution of

Z tan(y/72Li) =0,

with eigenfunction

w21(x) = a1cos(y/72x),

cos(y/72L1) .
i = a—— —7~ , fori>2
©2,i(x) a cos(yaL)) cos(y/72x), for i

Damien Galant
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The n-bridge

Properties of s

We observe that:
2,; are even on each edge;
one nodal domain of 5 is included in ey;
2,; does not have a root on [—L;, L;] for i > 2

if A; = a2 | then Ay > Ay > .. > Ay;
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The n-bridge

Properties of s

We observe that:
2,; are even on each edge;
one nodal domain of 5 is included in ey;
2,; does not have a root on [—L;, L;] for i > 2

if L = LJ' then (pzy,‘(X) = (sz(X).

then A; > A, > ... > A,

Damien Galant
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Conclusions

Ground state: It is constant for p = 2.

Nodal ground state: For p ~ 2
uj are even on each edge;
one nodal domain is strictly included in eq;
does not have a root on [—L;, L;] for i > 2;
if A, = maxe, |uj| then AL > A forall i > 2:

Damien Galant



Introduction An asymptotic regime Examples
oo [ESSEESEEESEEEEEEEE] [ESES SESsESSEsEsEssssEs)

The n-bridge

Conclusions

Ground state: It is constant for p = 2.

Nodal ground state: For p ~ 2
uj are even on each edge;
one nodal domain is strictly included in eq;
does not have a root on [—L;, L;] for i > 2;
if A, = maxe, |uj| then AL > A forall i > 2:
if L; = L; then uj(x) = uj(x).

Damien Galant
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The dumbbell — Conclusion

e3 length 213

e1 length 214 e length 214
Ground state: It is constant for p = 2.

Nodal ground state: For p ~ 2
uy, Up are even,
the root of u is the middle point of e3,
u is odd “globally”.
us is strictly monotone.
the maximum of 5 is the “extremity” of the loop.

Damien Galant
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The tadpole — Dirichlet

ey of length 2L

e of length L

D

For p = 2, the positive GS is even on the loop, increasing on the segment.
For p =~ 2, the NGS is

even on the loop,

one nodal domain is included in the loop,

the maximum of the amplitude is in the interior of the segment.

Damien Galant
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The tadpole — Neumann

e of length 2L

V e of length L

N

For p =~ 2, the GS is constant

The second eigenvalue is 72 = (47)? with eigenfunction

s T
2,1(x) = —2ap cos <2L ), w22(x) = agcos<2L )
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The tadpole — Neumann

e of length 2L

V e of length L

N

For p =~ 2, the GS is constant

The second eigenvalue is 72 = (47)? with eigenfunction

s T
2,1(x) = —2ap cos <2L ), w22(x) = agcos<2L )

(2 is even on the loop,

the loop is one nodal domain, the segment is the second nodal
domain, the nodal set is the vertex v
the maximum of the amplitude is on the vertex of degree 1.
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The tadpole — Neumann

e of length 2L

V e of length L

N

What about the NGS for p = 27
Easy:
u is even on the loop,

the maximum of the amplitude is on the line.

Damien Galant
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The tadpole - Neumann

e of length 2L

ey of length L N

What about the nodal domain? u(v) =0 or not?

Damien Galant
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The tadpole - Neumann

u cannot be equal to zero at the vertex v as otherwise us is a solution of

—u" + Au = |u|P~%u
u(—-L)=u(L)=0
u>0on]—LL[

and up is a solution of

—u" 4+ \u = |u|P~%u
d(0)=u(l)=0
u<0on]o,L]

By uniqueness of the solution of these problems and as u; = —us|jp () this
is not a solution on the graph as it does not satisfy the Kirchhoff condition.

Damien Galant
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The tadpole — Neumann

ey of length 2L

e; of length L N

In fact u=1(0) = {xo} with xo a point of the segment.
(x) = —2a cos(1 ) (x)=a cos(1 )
2,1\ X) = 2 2LX ,  P22(X) = az 2LX

hence the amplitude is larger on the segment.

The same is true for the NGS by convergence.

Damien Galant
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The tadpole — Neumann

We know that the time needed to go from the maximum to O is a
decreasing function of the value of the maximum. Hence the result.

Damien Galant
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The tadpole — Neumann

We know that the time needed to go from the maximum to O is a
decreasing function of the value of the maximum. Hence the result.

Conclusion: For p =~ 2, the NGS satisfies :
u is even on the loop,
the maximum of the amplitude is on the line,
u™1(0) = {xo} with x a point of the segment,

one nodal domain is included in the segment, the other contains the
loop.

Damien Galant
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One bubble

ez of length 213

D N
e1 of length Ly e> of length L;

. . T 2 : . .
First eigenvalue: v = (2 ) with the first eigenfunction even on

(L3 +2L1)
the loop. The GS is even on the loop.

Damien Galant
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One bubble

Second eigenvalue:

37 2 .
If L3 < 4Ly then v = (m) is simple with the second

eigenfunction even on the loop and not identically zero on an edge. In that
case, the NGS is also even on the loop.
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One bubble

Second eigenvalue:

37 2 .
If L3 < 4Ly then v = (m> is simple with the second

eigenfunction even on the loop and not identically zero on an edge. In that
case, the NGS is also even on the loop.

2

If L3 > 4Ly then v = <L1) is simple with the second eigenfunction odd
3

on the loop and identically zero on e; and on e>. What about the NGS?

Damien Galant
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The limit when p — 2 on the loop
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Box when p ~ 2 on the loop
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Sign change on the loop
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Problem: behaviour at the node?

Damien Galant




Introduction An asymptotic regime Examples
oo [ESSEESEEESEEEEEEEE] [ESSESEESsEEEEsEsEEs sas)

Continuity
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Conclusion: On the loop

Damien Galant
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One bubble — Asymmetric vertex conditions

e3 of length 2L3

D N
e1 of length Ly e of length L;

The GS is even on the loop.
If L3 < 4L; then the NGS is also even on the loop.

If L3 > 414 then the NGS is odd on the loop and identically zero on e;
and on e.

Damien Galant
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The symmetric stargraph — Symmetry breaking

For L fixed, by uniqueness, for p ~ 2, the GS is symmetric (i.e. its
restrictions to all edges, viewed as functions [0, L] — R, are all equal).
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For L fixed, by uniqueness, for p ~ 2, the GS is symmetric (i.e. its
restrictions to all edges, viewed as functions [0, L] — R, are all equal).

Instead, for any p > 2, if L is large enough then the ground state on G is
not symmetric.
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The symmetric stargraph — Symmetry breaking

For L fixed, by uniqueness, for p ~ 2, the GS is symmetric (i.e. its
restrictions to all edges, viewed as functions [0, L] — R, are all equal).

Instead, for any p > 2, if L is large enough then the ground state on G is
not symmetric.

In particular, the uniqueness of the positive solution is not always valid
(not as on the interval).

Damien Galant
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Thanks for your attention!
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